
MATH 3A WEEK IV
LINEAR TRANSFORMATIONS

PAUL L. BAILEY

1. Linear Transformations

Definition 1. Let V and W be a vector spaces.
A linear transformation from V to W is a function T : V → W such that

(T1) T (x + y) = T (x) + T (y) for every x, y ∈ V ;
(T2) T (ax) = aT (x) for every a ∈ R and x ∈ V .

Remark 1. If we say, “let T : V → W be a linear transformation”, but V and
W have not yet been specified, it is implicit that V and W are arbitrary vector
spaces.

Proposition 1. Let T : V → W be a linear transformation.
Then T (0V ) = 0W .

Proof. Since 0 ∈ R, by (T2) we have T (0V ) = T (00V ) = 0T (0V ) = 0W . �

Example 1. Let T : V → W be given by T (v) = 0W for every v ∈ V . Then T
is a linear transformation, called the zero transformation.

Example 2. Let T : V → V be given by T (v) = av, where a ∈ R is a fixed real
number. Then T is a linear transformation, called dilation by a.

Example 3. Let V be a vector space and let X = {x1, . . . , xn} be a basis for V .
Then every point v ∈ V can be written in a unique way as a linear combination
from X. Select a subset Y = {x1, . . . , xk} ⊂ X and set W = span(Y ); note that
W is a vector space, and that Y is a basis for W .

Define a function T : V → W by T (v) =
∑k

i=1 aixi, where v =
∑n

i=1 aixi.
Then T is a linear transformation, called projection onto W .

Remark 2. Linear transformations are so named because they take lines to
lines (or to a point), planes to planes (or to lines or to a point), and so forth.
We now show this.
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2. Transformations and Bases

Proposition 2. Let T : V → W be a linear transformation and let X ⊂ V .
Then T (span(X)) = span(T (X)).

Proof. To show that two sets are equal, we show that each is contained in the
other.

Let w ∈ T (span(X)). Then w = T (v) for some v ∈ span(X). Since v ∈
span(X), there exist vectors x1, . . . , xn ∈ X and real numbers a1, . . . , an ∈ R
such that

v =
n∑

i=1

aixi.

Since T is a linear transformation, it passes through summations and scalar
multiplications, so

w = T (v) = T (
n∑

i=1

aixi) =
n∑

i=1

T (aixi) =
n∑

i=1

aiT (xi).

This latter expression is in the span of X, so w ∈ span(X).
Let w ∈ span(T (X)). Then there exist vectors w1, . . . , wm ∈ T (X) and real

numbers b1, . . . , bm such that

w =
m∑

i=1

biwi.

For each i, since wi ∈ span(X), the exists xi ∈ X such that wi = T (xi). This
gives

w =
m∑

i=1

biwi =
m∑

i=1

biT (xi) =
m∑

i=1

T (bixi) = T (
m∑

i=1

bixi).

Since
∑m

i=1 bixi ∈ span(X), we see that w ∈ T (span(X)). �

Proposition 3. Let V and W be vector spaces. Let X = {v1, . . . , vn} ⊂ V be
a basis for V . Let Y = {w1, . . . , wn} ⊂ W . Then there exists a unique linear
transformation T : V → W such that T (vi) = wi.

Proof. For each v ∈ V , there exist unique real numbers a1, . . . , an such that
v =

∑n
i=1 aivi. Define T (v) =

∑n
i=1 aiwi. It is clear that T (vi) = wi, and it

is easy to verify that T is linear. Uniqueness comes from the necessity of this
definition, given that we require T to be linear. �

Corollary 1. Let T : V → W be a linear transformation. Then T is completely
determined by its effect on any basis for V .

Remark 3. The above idea is a double edged sword. We completely know a
transformation T : V → W if we know its effect on any basis for V . On the other
hand, if we wish to construct a linear transformation, we only need to specify its
effect on some basis.
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3. Transformations and Subspaces

Proposition 4. Let T : V → W be a linear transformation and let U ≤ V .
Then T (U) ≤ W .

Proof. We have T (U) = T (span(U)) = span(T (U)). Thus T (U) is a subspace,
since it equals its own span. �

Proposition 5. Let T : V → W be a linear transformation and let U ≤ V .
If U is finite dimensional, then T (U) is finite dimensional, and

dim(T (U)) ≤ dim(U).

Proof. Suppose that U is finite dimensional, and let X ⊂ U be a basis for U .
Then T (U) = T (span(X)) = span(T (X)), so T (U) is spanned by the finite set
T (X). If Y is a basis for T (U), then |Y | ≤ |T (X)| ≤ |X|, that is, dim(T (U)) ≤
dim(U). �

Example 4. Let T : R3 → R2 be given by T (x, y, z) = (x, y).
Let U be yz-plane; then T (U) is the y-axis.

Proposition 6. Let T : V → W be a linear transformation and let U1, U2 ≤ V .
Then T (U1 + U2) = T (U1) + T (U2).

Proof. We write this proof as a chain of logical equivalences.

w ∈ T (U1 + U2) ⇔ w = T (u1 + u2) for some u1 ∈ U1, u2 ∈ U2

⇔ w = T (u1) + T (u2) because T is linear

⇔ w ∈ T (U1) + T (U2) by definition of image.

�

Proposition 7. Let T : V → W be a linear transformation and let U ≤ W .
Then T−1(U) ≤ V .

Proof. We verify the three properties of a subspace.
(S0) Since T (0V ) = 0W ∈ U , we see that 0V ∈ T−1(U).
(S1) Let v1, v2 ∈ T−1(U). Then T (v1), T (v2) ∈ U . Thus T (v1) + T (v2) ∈ U

because U is a subspace. But T (v1) + T (v2) = T (v1 + v2) because T is a linear
transformation, which shows that v1 + v2 ∈ T−1(U).

(S2) Let v ∈ T−1(U) and a ∈ R. Then T (v) ∈ U , so aT (v) ∈ U , whence
T (av) ∈ U . Thus av ∈ T−1(U). �

Example 5. Let T : R3 → R2 be given by T (x, y, z) = (x, y). Let U = {0}.
Then T−1(U) is the z-axis.
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4. Kernels and Injectivity

Definition 2. Let T : V → W be a linear transformation.
The kernel of T is the subset of V denoted by ker(T ) and defined as

ker(T ) = {v ∈ V | T (v) = 0}.

Remark 4. Note that an alternate way of writing this is ker(T ) = T−1(0).

Proposition 8. Let T : V → W be a linear transformation.
Then ker(T ) ≤ V .

Proof. Since {0} ≤ W , this follows from Proposition 7. �

Proposition 9. Let T : V → W be a linear transformation.
Then T is injective if and only if ker(T ) = {0}.

Proof.
(⇒) Suppose that T is injective. Let v ∈ ker(T ). Then T (v) = 0W ; but

T (0V ) = 0W , so since T is injective, v = 0V . Thus ker(V ) = {0V }.
(⇐) Suppose that ker(T ) = {0W }. Let v1, v2 ∈ V such that T (v1) = T (v2).

Then T (v1) − T (v2) = 0W , and since T is linear, T (v1 − v2) = 0W . Since
ker(T ) = {0V }, we have v1−v2 = 0V . Thus v1 = v2 Therefore T is injective. �

Proposition 10. Let T : V → W be a linear transformation. Then T is injective
if and only if for every independent subset X ⊂ V , T (X) is independent.

Proof. We prove the contrapositive in both directions.
(⇒) Suppose that X ⊂ V is independent but that T (X) is dependent. Then

there exists a nontrivial dependence relation

a1T (x1) + · · ·+ anT (xn) = 0,

where xi ∈ X and ai ∈ R, not all zero. Then T (
∑n

i=1 aixi) = 0, so
∑n

i=1 aixi is
a nontrivial member of ker(T ). Thus T is not injective.

(⇐) Suppose that T is not injective. Then its kernel is nontrivial, so there
exists an nonzero vector v ∈ V such that T (v) = 0. Since v 6= 0, the set {v} is
independent. But its image T (v) is dependent. �

Proposition 11. Let T : V → W be a linear transformation. Let X be a basis
for V . Then T is injective if and only if T (X) is a basis for T (V ).

Proof. Suppose X spans V . Then

T (V ) = T (span(X)) = span(T (X)).

Now the result follows immediately from the preceding proposition. �

Corollary 2. Let T : V → W be an injective linear transformation. Let X be a
basis for V . Then

(a) T (X) is a basis for T (V );
(b) dim(V ) = dim(T (V )).
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5. Kernels and Cosets

Definition 3. Let V be a vector space and let W ≤ V .
A coset (or “translation”) of W is a subset of V of the form

x + W = {x + w | w ∈ W},
where x ∈ V .

Example 6. Let Z = {(x, y, z) ∈ R3 | x = y = 0}. Then Z is commonly known
as the “z-axis”. A coset of Z is a set of the form v + Z, where v ∈ R3. In fact,
we can always select v to lie in the xy-plane; we see that v + Z is a vertical line
in R3, parallel to the z-axis, translated away by the vector v.

Proposition 12. Let V be a vector space and let W ≤ V . Let v1, v2 ∈ V . Then
(a) V = ∪v∈V (v + W );
(b) (v1 + W ) ∩ (v2 + W ) 6= ∅ ⇒ (v1 + W ) = (v2 + W ).

Proof. Exercise. �

Proposition 13. Let V be a vector space and let W ≤ V .
Then v1 + W = v2 + W if and only if v2 − v1 ∈ W .

Proof. Exercise. �

Proposition 14. Let V and W be vector spaces. Let T : V → W be a linear
transformation. Let w ∈ T (V ) and let v ∈ T−1(w). Then

T−1(w) = v + ker(T );

in words, the preimage of w is a coset of the kernel.

Proof. We show that each set is contained in the other.
Let x ∈ T−1(w). Then T (x) = w. Since v ∈ T−1(w), we have T (v) = w.

Thus T (x − v) = T (x) − T (v) = w − w = 0, so x − v ∈ ker(T ). Then x =
v + (x− v) ∈ v + ker(T ).

Let x ∈ v + ker(T ). Then x = v + k where k ∈ ker(T ), so T (x) = T (v + k) =
T (v) + T (k) = w + 0 = w, so x ∈ T−1(w). �

Example 7. A system of m equations in n variables gives a matrix equation

Ax = b.

The matrix A corresponds to a linear transformation T : Rn → Rm given by
T (x) = Ax. The solution set of the homogeneous equation Ax = 0 is the
kernel of T . If v is a particular solution to Ax = b, then the solution set is the
homogeneous solution offset by the particular solution v.
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6. Kernels and Direct Sums

Definition 4. Let V be a vector space and let U1, U2 ≤ V . We say that V is a
direct sum of U1 and U2, and write V = U1 ⊕ U2, if
(D1) V = U1 + U2;
(D2) U1 ∩ U2 = {0}.

Proposition 15. Let V be a vector space and let X be a basis for V .
Let Y1 ⊂ X and let Y2 = X r Y1. Let U1 = span(Y1) and let U2 = span(Y2).
Then V = U1 ⊕ U2.

Proof. We verify the two properties of direct sum.
(D1) We always have U1 + U2 ≤ V ; we need to show that V ⊂ U1 + U2.

If v ∈ V , then V is a linear combination from X because X spans V . Since
X = Y1 ∪ Y2, v can be written as a linear combination of some vectors from Y1

plus a linear combination some vectors from Y2. Such an element is in U1 + U2.
(D2) Let v ∈ U1 ∩U2. Then v is a linear combination from Y1 and also v is a

linear combination from Y2. The difference of these is a linear combination from
X which equals zero; since X is linearly independent, all of the coefficients must
be zero. Thus v = 0. �

Proposition 16. Let V be a vector space.
Let U1, U2 ≤ V such that V = U1 ⊕ U2. Let Y1 be a basis for U1 and Y2 be a
basis for U2. Then Y1 ∪ Y2 is a basis for V .

Proof. Exercise. �

Corollary 3. Let V be a finite dimensional vector space and let U1, U2 ≤ V
such that V = U1 ⊕ U2. Then dim(V ) = dim(U1) + dim(U2).

Example 8. Let V = R3. Let U1 be a plane through the origin in R3 and let
U2 be a line through the origin in R3. Then V = U1 ⊕ U2 if and only if the line
U2 does not lie on the plane U1.

Proposition 17. Let T : V → W be a linear transformation. Let K = ker(T ).
Then

(a) there exists U ≤ V such that V = K ⊕ U ;
(b) T �U : U → W is injective.

Proof. Let Y1 be a basis for K and let X be a completion of Y1 to a basis for
X. Let Y2 = X r Y1. Let U = span(Y2). Then by Proposition 15, V = K ⊕ U .
This proves (a).

Recall that T �U : U → W is the restriction of T to the set U ; that is, we only
consider what T does to elements of U . Let u ∈ ker(T �U ). Then T (u) = 0, so
u ∈ K. Thus u ∈ K ∩ U = {0}, so u = 0. Thus the kernel of T �U is trivial, so
T �U is injective by Proposition 9. �
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7. Rank and Nullity

Definition 5. Let V be a finite dimensional vector space and let T : V → W
be a linear transformation. Let img(T ) = T (V ) denote the image of T .

The rank of T is the dimension of the image of T : rank = dim(img(T )).
The nullity of T is the dimension of the kernel of T : nullity = dim(ker(T )).

Theorem 1. (Rank plus Nullity Theorem)
Let V be a finite dimensional vector space and let T : V → W be a linear
transformation. Then dim(V ) = dim(ker(T )) + dim(img(T )).

Proof. Let K = ker(T ). By Proposition 17 (a), there exists a subspace U ≤ V
such that V = K⊕U . Thus dim(V ) = dim(K)+dim(U). By Proposition 17 (b),
the linear transformation T �U : U → W is injective, so dim(T (U)) = dim(U).
Thus

dim(V ) = dim(K) + dim(U) = dim(ker(T )) + dim(img(T )).
�

Corollary 4. Let V and W be a finite dimensional vector spaces of the same
dimension. Let T : V → V be a linear transformation. Then T is injective if
and only if T is surjective.

Proof. Exercise. �
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8. Composition of Linear Transformations

Proposition 18. Let S : U → V and T : V → W be linear transformations.
Then T ◦ S : U → W is a linear transformation.

Proof. We verify the two properties of a linear transformation.
(T1) Let u1, u2 ∈ U . Then

T (S(u1 + u1)) = T (S(u1) + S(u2)) = T (S(u1)) + T (S(u2)).

(T2) Let u ∈ U and a ∈ R. Then

T (S(au)) = T (aS(u)) = aT (S(u)).

�

Example 9. Let S : R2 → R2 be dilation by a and let T : R2 → R2 be dilation
by b. Then T ◦ S : R2 → R3 is dilation by ab.

Example 10. Let S : R2 → R2 be rotation by α degrees and let T : R2 → R2

be rotation by β degrees. Then T ◦ S : R2 → R3 is rotation by α + β degrees.

Definition 6. Let T : V → W be a linear transformation.
We say that T is invertible if there exists a linear transformation S : W → V

such that S ◦ T = idV and T ◦ S = idW . Such an S is called the inverse of T ; it
is necessarily unique, and is denoted by T−1.

Proposition 19. Let T : V → W be a linear transformation.
Then T is invertible if and only if T is bijective.

Proof. Exercise. �

Proposition 20. Let T : U → V be a linear transformation.
Let S : V → W be an injective linear transformation.
Then ker(S ◦ T ) = ker(T ).

Proof. Exercise. �
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Remark 5. Let A be an m×n matrix and consider the matrix equation Ax = 0,
where 0 is the zero n × 1 column vector. The solution to this equation is the
kernel of the corresponding linear transformation TA : Rn → Rm.

Let B be A in reduced row echelon form. Row reduction of A corresponds
to warping m-space by invertible transformations. Then ker(TB) = ker(TA),
because B = UA, where U is a product of elementary invertible matrices and so
it is invertible; then TU is injective. Therefore ker(TB) = ker(TU ◦TA) = ker(TA).

Moreover, the basic columns of B are clearly linearly independent. Then the
pullback of these basic columns via U−1 gives linearly independent vectors in
img(T ) = TA(Rn), the image of TA.

A basis for the kernel of TA is given by modifying the free columns of B in
the manner prescribed in solving Ax = 0.

A basis for the image of TA is given by the columns of A corresponding to the
basic columns of B.

Example 11. Let e1, . . . , e4 be the standard basis vectors for R4. Let

v1 = (2,−4, 4), v2 = (1,−1, 3), v3 = (3,−7, 5), v4 = (0, 2, 5) ∈ R3.

Let T : R4 → R3 be the unique linear transformation given by T (ei) = vi. Find
a basis for the image and the kernel of T .

Solution. Set

A =

 2 1 3 0
−4 −1 −7 2
4 3 5 5

 .

Row reduce A; the corresponding reduced row echelon matrix is

B =

1 0 2 0
0 1 −1 0
0 0 0 1

 .

The basic variables are x1, x2, and x4. The free variable is x3. So the solution
to Ax = 0 is

x3


−2
1
1
0

 ;

thus {(−2, 1, 1, 0)} is a basis for ker(T ), and {(2,−4, 4), (1,−1, 3), (0, 2, 5)} is a
basis for img(T ), the image of T . �

Remark 6. Let Y = {v1, . . . , vn} ∈ Rm. We wish to determine whether or not
the set Y is independent. If n > m, we know they cannot be independent, so
assume that n ≤ m.

Form the matrix A = [v1 | · · · | vn]. Corresponding to A is a linear trans-
formation TA : Rn → Rm. We know that n = dim(Rn) = dim(ker(TA)) +
dim(img(TA)). Now X is independent if and only if there span in Rm is a vector
space of dimension n. This span is exactly img(TA). Thus X is independent if
and only if dim(img(TA)) = n. This is the case if and only if dim(ker(TA)) = 0.

Row reduce A to obtain a matrix B; only forward elimination is necessary.
Now X is dependent if and only if B has a free column, which is the case if and
only if B has a zero row (since n ≤ m).
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9. Isomorphisms

Definition 7. Let V and W be vector spaces.
An isomorphism from V to W is a bijective linear transformation T : V →

W . We say that V is isomorphic to W , and write V ∼= W , if there exists an
isomorphism T : V → W .

Proposition 21. Let V be a vector space.
Then idV : V → V is an isomorphism.

Proof. Clear. �

Proposition 22. Let T : V → W be an isomorphism.
Then T−1 : W → V is an isomorphism.

Proof. Since T is bijective, T−1 : W → V is a function. We verify the properties
of a linear transformation.

(T1) Let w1, w2 ∈ W . Since T is bijective, there exist unique elements
u1, u2 ∈ U such that T (u1) = w1 and T (u2) = w2. Now T (u2 + u2) = T (u1) +
T (u2) = w1 + w2, so T−1(w1 + w2) = u1 + u2 = T−1(w1) + T−1(w2).

(T2) Let w ∈ W and a ∈ R. There exists a unique element u ∈ U such that
T (u) = w. Then T (au) = aT (u) = aw, so T−1(aw) = au = aT−1(w). �

Proposition 23. Let S : U → V and T : V → W be isomorphisms.
Then T ◦ S : U → W is an isomorphism.

Proof. We have seen that the composition of linear transformations is linear, and
we always have that the composition of bijective functions is bijective. �

Remark 7. Let U , V , and W be vector spaces. Then
(a) V ∼= V ;
(b) V ∼= W ⇔ W ∼= V ;
(c) U ∼= V and V ∼= W ⇒ U ∼= W .

This says that isomorphism is an equivalence relation.

Proposition 24. Let T : V → W be a linear transformation. Let X be a basis
for V . Then T is an isomorphism if and only if T (X) is a basis for W .

Proof.
(⇒) Suppose that T is an isomorphism. Then T is injective, so by Proposition

11, T (X) is a basis for T (V ). But T is also surjective, so T (V ) = W , and the
result follows.

(⇐) Suppose that T (X) is a basis for W . Then T is clearly surjective, and
by Proposition 11, T is also injective. Thus T is an isomorphism. �

Remark 8. In light of Proposition 3, we may construct an isomorphism between
spaces by sending a basis to a basis.
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Definition 8. Let V be a finite dimensional vector space of dimension n.
An ordered basis for V is an ordered n-tuple (x1, . . . , xn) ∈ V n of linearly

independent vectors from V .

Remark 9. Note that if (x1, . . . , xn) is an ordered basis, then X = {x1, . . . , xn}
is a basis. With this understanding, we may say: “let X be an ordered basis”,
by which we mean that X is the basis which corresponds to an ordered basis.

Theorem 2. Let V be a finite dimensional vector space of dimension n. Let
X = {x1, . . . , xn} be an ordered basis for V . Define a linear transformation

ΓX : V → Rn by ΓX(xi) = ei.

Then ΓX is an isomorphism.

Description. We have already essentially proven this, so let us describe it in more
detail.

Every element of V may be written in a unique way as a linear combination of
elements from X: if v ∈ V , then v =

∑
i=1 aixi for some real number a1, . . . , an.

Then

ΓX(v) =
n∑

i=1

aiΓX(xi) =
n∑

i=1

n∑
i=1

aiei = (a1, . . . , an);

this is the linear transformation that sends the basis X of V to the standard basis
for Rn, whose existence, uniqueness, and linearity is guaranteed by Proposition
3. It is an isomorphism by Proposition 24. �

Corollary 5. Let V and W be vector spaces of dimension n. Then V ∼= W .

Proof. Every finite dimensional vector space has a basis. Let X be an ordered
basis for V and let Y be an ordered basis for W . Since ΓY : W → Rn is an
isomorphism, it is invertible, and its inverse is also an isomorphism. Since the
composition of isomorphisms is an isomorphism, we see that

Γ−1
Y ◦ ΓX : V → W

is an isomorphism, so V ∼= W . �

Remark 10. Even though two vector spaces of the same dimension are isomor-
phic, there are many ways in which they are isomorphic. Indeed, each basis X
for V gives a different isomorphism ΓX : V → Rn. Controlling this is one of the
challenges of linear algebra.
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10. Computing Linear Transformations via Matrices

Remark 11. Let V be a vector space of dimension n and let W be a vector
space of dimension m. Let T : V → W be a linear transformation. If we know
a basis for V and for W , we can use matrices to compute information about T .

Let X be a basis for V and let Y be a basis for W . Then ΓX : V → Rn is an
isomorphism and ΓY : W → Rm is an isomorphism. These isomorphisms pick
off the coefficients of any vector in V and W and allow us to think of them as
vector in Rn and Rm, respectively. Actually, what we are doing is defining a
transformation S : Rn → Rm given by S = ΓY ◦ T ◦ ΓX . In this case,

T = Γ−1
Y ◦ S ◦ ΓX .

This can be written in diagram form:

V
T−−−−→ W

ΓX

y yΓY

Rn −−−−→
S

Rm

This says that to compute T (v), it suffices to push v into Rn via u = ΓX(v),
compute S(u), then pull this result back to W via ΓY .

But S : Rn → Rm corresponds to a matrix A, and we can compute Au by
matrix multiplication. This also allows us to compute kernels, images, and so
forth via matrices.

Example 12. Let v1 = (1, 0, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1) ∈ R4. Let
V be the subspace of R4 spanned by {v1, v2, v3}; these form a basis for V . Let
W = R2 Let w1 = (1, 2), w2 = (−1, 0), w3 = (3, 2) ∈ W . Let T : V → W be the
unique linear transformation given T (vi) = wi. Find a basis for the kernel of T .

Solution. Let e1, e2, e3 be the standard basis vectors for R3. Let S : V → R3 be
given by T (vi) = ei. Then S is an isomorphism. Let R : R3 → R2 be given by
T (ei) = wi. The matrix for R is

A =
[
1 −1 3
2 0 2

]
.

Row reduce A to get

UA =
[
1 0 7
0 1 4

]
.

The kernel of R is spanned by the vector (−7,−4, 1).
Now T = S−1RS. Thus ST = RS. Then

ker(T ) = ker(ST ) = ker(RS) = S−1(ker(R)).

Thus to find ker(T ), pull the vector (−7,−4, 1) back through S (find its preim-
age). This is −7(1, 1, 0, 0) − 4(1, 0, 1, 0) + (1, 0, 0, 1) = (−10,−7,−4, 1). The
kernel of T is the span of this vector. �
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11. Vector Space of Linear Transformations

Proposition 25. Let V and W be vector spaces and set

L(V,W ) = {T : V → W | T is linear}.
Let S : V → W and T : V → W be linear transformations. Let a ∈ R. Define
the sum S + T and the scalar product aT by their effect on any vector v ∈ V :

• (S + T )(v) = S(v) + T (v) ;
• (aT )(v) = aT (v) .

Then
(a) S + T : V → W and aT : V → W are linear transformations;
(b) L(V,W ) is a vector space.

Reason. The verification that S+T and aT are linear transformations is straight-
forward.

The proof that L(V,W ) is a vector space comes down to the fact that all
of the properties (V1) through (V8) of the vector space W work pointwise on
functions into W . �

Remark 12. The vector space Mm×n of m× n matrices is isomorphic to Rmn,
as one expects. But also, we know that matrices correspond to linear transfor-
mations of cartesian spaces; we now describe this correspondence in terms of
isomorphism.

Proposition 26. Let Tij : Rn → Rm be given by Tij(ej) = ei and Tij(ek) = 0 if
k 6= j. Then {Tij | i = 1, . . . ,m; j = 1, . . . , n} is a basis for L(Rn, Rm).

Reason. One can show that this set is linearly independent and spans. �

Proposition 27. Define a function

Ωm×n : L(Rn, Rm) → Mm×n by Ωm×n(T ) = AT ,

where AT = [T (e1) | · · · | T (en)] is the matrix corrsponding to a transformation
T : Rn → Rm. Then Ωm×n is an isomorphism.

Reason. The function Ωm×n sends the basis {Tij} for L(Rn, Rm) to the basis
{Mij} for Mm×n. �

Proposition 28. Let V and W be finite dimensional vector spaces. Let X =
{x1, . . . , xn} be an ordered basis for V and Y = {y1, . . . , ym} be an ordered basis
for W . Define a function

ΩY,X : L(V,W ) → Mm×n by ΩY,X(T ) = AS ,

where S = ΓY ◦ TΓ−1
X and AS = [S(e1) | · · · | S(en)] is the matrix corresponding

to S. Then ΩY,X is an isomorphism.

Reason. In a manner similar to the case where V = Rn and W = Rm, one can
find a basis for L(V,W ) that is sent by ΩY,X to the basis {Mij} for Mm×n. �
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12. Linear Operators

Definition 9. Let V be a vector space.
A linear operator on V is a linear transformation T : V → V .
Let L(V ) denote the set of all linear operators on V .

Let V be a vector space and let S, T : V → V be a linear operators. Then
the composition T ◦ S : V → V is a linear operator. Let us drop the ◦ from the
notation and think of composition of linear operators as multiplication in the set
L(V ): thus TS is the transformation T ◦ S.

This multiplication distributes over addition of operators:

T (S + R) = TS + TR; (T + S)R = TR + SR.

Thus L(V ) is a set which comes equipped with two operations, addition of trans-
formations and multiplication of transformations. The additive identity of this
set is the zero transformation (which we denote by 0), and the multiplicative
identity is the identity transformation idV , which we now denote by 1. Ev-
ery transformation T has an additive inverse −T . A transformation T has a
multiplicative inverse T−1 if and only if T has a trivial kernel.

Let a ∈ R. Define Na : V → V to be dilation by a: Na(v) = av for all v ∈ V .
Then Na is a linear operator. Note that Na commutes with any other operator:

NaT = TNa.

Also note that NaT is exactly the transformation which we previously described
by aT . When Na occurs on the left, we drop the N from the notation, and
simply write aT instead of NaT .

Let T 2 = TT , T 3 = TTT , and in general, let Tn denote the composition
of T with itself n times. This is T applied to the space V over and over. For
example, if T is rotation of R2 by an angle of 45 degrees, then T 4 is rotation by
180 degrees and T 8 is the identity tranformation I = idV .

Let T : V → V be a linear operator. We see that any polynomial in T

L = Tn + an−1T
n−1 + · · ·+ a1T + a0

is a linear operator. Its effect on v ∈ V is given by distributing v into the
polynomial:

L(v) = Tn(v) + an−1T
n−1(v) + · · ·+ a1T (v) + a0.
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13. Linear Algebra and Differential Equations

Consider the differential equation

y′′ + by′ + cy = g(t),

where b, c ∈ R and g(t) is a smooth function on some open interval I ⊂ R. To
solve this differential equation means to find all smooth functions y such that
the function y′′ + by′ + cy is equal to the function g(t). We use linear algebra to
analyse this situation.

Let I ⊂ R be an open interval and let D(I) be the set of smooth real valued
functions defined by I; this is a vector space under addition and scalar multi-
plication of functions. Define D : D(I) → D(I) by D(f) = f ′, the derivative
of f . Then D is a linear transformation. Any polynomial in D is also a linear
transformation, called a differential operator. Note that the kernel of D is the
set of all constant functions on I. This is a one dimensional subspace of D(I),
spanned by the function f(t) = 1.

Let b, c ∈ R and let g ∈ D(I). Define a function

L : D(I) → D(I) by L[y] = y′′ + by′ + cy.

Then L is a differential operator:

L = D2 + bD + c.

The general solution to the differential equation

y′′ + by′ + cy = g(t)

is of the form y = yh + yp, where yh is the general solution to the homogeneous
differential equation L[y] = 0 and yp is a particular solution to the differential
equation L[y] = g(t). This comes from the fact that the solution to the homo-
geneous equation is the kernel of L, and the solution to the nonhomogeneous
equation is a coset of this kernel.

One may attempt to solve the homogeneous differential equation L[y] = 0 by
factoring the linear operator L:

L = (D − r1)(D − r2),

where ri = 1
2 (−b±

√
b2 − 4c) are the roots of the polynomial L. Now any solution

to (D − r2)[y] = 0 is also a solution to L[y] = 0, since (D − r1)[0] = 0. Since
D−r1 and D−r2 commute, the same can be said about solutions to (D−r1)[y].
But this differential equation is very easy to solve:

(D − r)[y] = 0 ⇔ y′ = ry ⇔ log y = r + C ⇔ y = kert,

where k = eC is an arbitrary constant of integration. One can show that ker(L) =
span{er1t, er2t}.
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14. Exercises

Exercise 1. Let V be a vector space.
Let U1, U2 ≤ V such that V = U1 ⊕ U2. Let Y1 be a basis for U1 and Y2 be a
basis for U2. Show that Y1 ∪ Y2 is a basis for V .

Exercise 2. Let V be a vector space and let W ≤ V . Let v1, v2 ∈ V .
(a) Show that V = ∪v∈V (v + W ).
(b) Show that (v1 + W ) ∩ (v2 + W ) 6= ∅ ⇒ (v1 + W ) = (v2 + W ).

Exercise 3. Let V be a vector space and let W ≤ V .
Show that v1 + W = v2 + W if and only if v2 − v1 ∈ W .

Exercise 4. Let V be a finite dimensional vector space.
Let U ≤ V and let T : V → V be a linear transformation.

(a) Show that U = V if and only if dim(U) = dim(V ).
(b) Show that T is injective if and only if T is surjective.

Exercise 5. Let T : V → W be a linear transformation.
Show that T is invertible if and only if T is bijective.

Exercise 6. Let T : U → V be a linear transformation.
Let S : V → W be an injective linear transformation.
Show that ker(S ◦ T ) = ker(T ).

Exercise 7. Let T : V → W be a linear transformation and let U1, U2 ≤ V . In
each case, prove or give a counterexample.

(a) T (U1 ∩ U2) = T (U1) ∩ T (U2);
(b) V = U1 ⊕ U2 ⇒ T (V ) = T (U1)⊕ T (U2).

Exercise 8. Let T : V → W be a linear transformation and let U1, U2 ≤ W . In
each case, prove or give a counterexample.

(a) T−1(U1 ∩ U2) = T−1(U1) ∩ T−1(U2);
(b) W = U1 ⊕ U2 ⇒ T−1(W ) = T−1(U1)⊕ T−1(U2).

Exercise 9. Let Pn denote the vector space of polynomial functions of degree
less than or equal to n with real coefficients:

Pn = {f(x) = a0 + a1x + · · ·+ anxn | ai ∈ R}.
Let Γ : P4 → R5 be given by Γ(xi−1) = ei for i = 1, . . . , 5.
Let D : P4 → P4 be given by D(f) = df

dx .
Let T : R5 → R5 be given by T = Γ ◦D ◦ Γ−1.

(a) Describe why Γ is an isomorphism.
(b) Find the matrix corresponding to the linear transformation T .
(c) Find a basis for the image and the kernel of T .
(d) Find a basis for the image and the kernel of D.

Exercise 10. Let D(R) denote the set of all smooth functions on R.
Let D : D(R) → D(R) be given by D(f) = df

dx .
Let Dn : D(R) → D(R) denote D composed with itself n times.
Find ker(Dn); justify your answer.
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