MATH 3A WEEK IV
LINEAR TRANSFORMATIONS

PAUL L. BAILEY

1. LINEAR TRANSFORMATIONS

Definition 1. Let V and W be a vector spaces.
A linear transformation from V to W is a function T : V' — W such that
(T1) T(z+y) =T(x) + T(y) for every x,y € V;
(T2) T(ax) =aT(z) for every a e R and z € V.

Remark 1. If we say, “let T : V — W be a linear transformation”, but V' and
W have not yet been specified, it is implicit that V' and W are arbitrary vector
spaces.

Proposition 1. Let T : V. — W be a linear transformation.
Then T(Ov) = Ow.

Proof. Since 0 € R, by (T2) we have T'(0y) = T(00y) = 0T'(0y ) = Ow . O
Example 1. Let T : V — W be given by T(v) = Ow for every v € V. Then T

is a linear transformation, called the zero transformation.

Example 2. Let T: V — V be given by T(v) = av, where a € R is a fixed real
number. Then T is a linear transformation, called dilation by a.

Example 3. Let V be a vector space and let X = {x1,...,2,} be a basis for V.
Then every point v € V' can be written in a unique way as a linear combination
from X. Select a subset Y = {z1,...,2x} C X and set W = span(Y); note that
W is a vector space, and that Y is a basis for W.

Define a function 7' : V. — W by T(v) = Zle a;x;, where v = > | a;z;.
Then T is a linear transformation, called projection onto W.

Remark 2. Linear transformations are so named because they take lines to
lines (or to a point), planes to planes (or to lines or to a point), and so forth.
We now show this.
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2. TRANSFORMATIONS AND BASES

Proposition 2. Let T :V — W be a linear transformation and let X C V.
Then T'(span(X)) = span(T'(X)).

Proof. To show that two sets are equal, we show that each is contained in the
other.

Let w € T(span(X)). Then w = T(v) for some v € span(X). Since v €
span(X), there exist vectors z1,...,z, € X and real numbers aq,...,a, € R

such that .
v = Z a;T;.
i=1

Since T is a linear transformation, it passes through summations and scalar
multiplications, so

n

w="T(v) = T(Z a;r;) = ZT(aixi) = ZaiT(aji).

This latter expression is in the span of X, so w € span(X).
Let w € span(T'(X)). Then there exist vectors wy,...,wy, € T(X) and real
numbers by, ..., b, such that

m
i=1

For each i, since w; € span(X), the exists z; € X such that w; = T'(x;). This
gives

w = Z biwi = szT(l‘z) = ZT(bzxz) = T(Z bll‘z)
i=1 i=1 i=1 i=1
Since ", biz; € span(X), we see that w € T'(span(X)). O

Proposition 3. Let V and W be vector spaces. Let X = {v1,...,v,} CV be
a basis for V. Let Y = {wn,...,w,} C W. Then there exists a unique linear
transformation T : V. — W such that T'(v;) = w;.

Proof. For each v € V, there exist unique real numbers ayq,...,a, such that
v =" av;. Define T(v) = Y I a;w;. It is clear that T'(v;) = w;, and it
is easy to verify that T is linear. Uniqueness comes from the necessity of this
definition, given that we require 7' to be linear. O

Corollary 1. Let T : V — W be a linear transformation. Then T is completely
determined by its effect on any basis for V.

Remark 3. The above idea is a double edged sword. We completely know a
transformation 7' : V' — W if we know its effect on any basis for V. On the other
hand, if we wish to construct a linear transformation, we only need to specify its
effect on some basis.



3. TRANSFORMATIONS AND SUBSPACES

Proposition 4. Let T :V — W be a linear transformation and let U < V.
Then T(U) < W.
Proof. We have T(U) = T(span(U)) = span(T(U)). Thus T(U) is a subspace,
since it equals its own span. O
Proposition 5. Let T : V — W be a linear transformation and let U < V.
If U is finite dimensional, then T(U) is finite dimensional, and

dim(T'(V)) < dim(U).
Proof. Suppose that U is finite dimensional, and let X C U be a basis for U.
Then T(U) = T'(span(X)) = span(T(X)), so T(U) is spanned by the finite set
T(X). If Y is a basis for T(U), then |Y| < |T(X)| < |X], that is, dim(T'(U)) <
dim(U). O
Example 4. Let T : R? — R? be given by T(z,y, z) = (x,7).
Let U be yz-plane; then T'(U) is the y-axis.
Proposition 6. Let T : V — W be a linear transformation and let Uy, Us < V.
Then T(Uy + Us) = T(Uy) + T(Us).

Proof. We write this proof as a chain of logical equivalences.

wET(U1+U2)<:>’LU:T(U1+UQ) for some uy € Uy, us € Us
< w="T(u1)+ T(u2) because T is linear
sweT(U)+TUs) by definition of image.

O

Proposition 7. Let T : V — W be a linear transformation and let U < W.
Then T-Y(U) < V.

Proof. We verify the three properties of a subspace.

(S0) Since T'(0y) = Oy € U, we see that 0y € T-1(U).

(S1) Let v1,v2 € T~Y(U). Then T(v1),T(ve) € U. Thus T(v1) + T(v2) € U
because U is a subspace. But T'(v1) + T'(v2) = T(v1 + v2) because T is a linear
transformation, which shows that vy +ve € T—1(U).

(S2) Let v € TY(U) and @ € R. Then T(v) € U, so aT(v) € U, whence
T(av) € U. Thus av € T~YU). O

Example 5. Let T : R — R? be given by T(z,y,2) = (v,y). Let U = {0}.
Then T-1(U) is the z-axis.



4. KERNELS AND INJECTIVITY

Definition 2. Let T': V — W be a linear transformation.
The kernel of T' is the subset of V' denoted by ker(T") and defined as

ker(T) ={v eV |T(v) = 0}.
Remark 4. Note that an alternate way of writing this is ker(7T') = T1(0).

Proposition 8. Let T : V — W be a linear transformation.
Then ker(T) < V.

Proof. Since {0} < W, this follows from Proposition 7. O

Proposition 9. Let T : V. — W be a linear transformation.
Then T is injective if and only if ker(T) = {0}.
Proof.

(=) Suppose that T is injective. Let v € ker(T). Then T'(v) = Ow; but
T(0y) = Ow, so since T is injective, v = Oy. Thus ker(V) = {0y }.

(<) Suppose that ker(T) = {Ow}. Let v1,va € V such that T(vy) = T(ve).
Then T(v1) — T(v2) = Ow, and since T is linear, T(v; — v2) = Ow. Since
ker(T) = {Oy }, we have v; —vg = Oy. Thus vy = vg Therefore T is injective. [

Proposition 10. LetT : V — W be a linear transformation. Then T is injective
if and only if for every independent subset X C V', T(X) is independent.

Proof. We prove the contrapositive in both directions.
(=) Suppose that X C V is independent but that T'(X) is dependent. Then
there exists a nontrivial dependence relation
arT(x1) + -+ a,T(xy) =0,
where z; € X and a; € R, not all zero. Then T'(3"" ; a;z;) =0, s0 Y., a;x; is
a nontrivial member of ker(7T"). Thus T is not injective.
(<) Suppose that T is not injective. Then its kernel is nontrivial, so there
exists an nonzero vector v € V such that T'(v) = 0. Since v # 0, the set {v} is
independent. But its image T'(v) is dependent. O

Proposition 11. Let T : V. — W be a linear transformation. Let X be a basis
for V.. Then T is injective if and only if T(X) is a basis for T(V).
Proof. Suppose X spans V. Then
T(V) = T(span(X)) = span(T(X)).
Now the result follows immediately from the preceding proposition. O

Corollary 2. Let T : V — W be an injective linear transformation. Let X be a
basis for V.. Then

(a) T(X) is a basis for T(V);

(b) dim(V) = dim(T(V)).



5. KERNELS AND COSETS

Definition 3. Let V be a vector space and let W < V.
A coset (or “translation”) of W is a subset of V' of the form
r+W={z+w|weW},
where x € V.

Example 6. Let Z = {(2,y,2) € R® | # = y = 0}. Then Z is commonly known
as the “z-axis”. A coset of Z is a set of the form v + Z, where v € R3. In fact,
we can always select v to lie in the zy-plane; we see that v 4+ Z is a vertical line
in R3, parallel to the z-axis, translated away by the vector v.

Proposition 12. Let V be a vector space and let W < V. Let v1,v9 € V. Then
(a) V= UvEV(v + W);
D) n+EW)N (e +W)# = (11 +W) = (va+W).

Proof. Exercise. 0

Proposition 13. Let V be a vector space and let W < V.
Then vy + W = vo + W if and only if vo — v, € W.

Proof. Exercise. O

Proposition 14. Let V and W be vector spaces. Let T : V. — W be a linear
transformation. Let w € T(V) and let v € T~ (w). Then

T~ (w) = v + ker(T);
in words, the preimage of w is a coset of the kernel.

Proof. We show that each set is contained in the other.

Let € T~Y(w). Then T(x) = w. Since v € T~} (w), we have T(v) = w.
Thus T(x —v) = T(x) = T(v) = w—w =0, so z —v € ker(T). Then z =
v+ (z —v) € v+ ker(T).

Let z € v+ ker(T'). Then © = v + k where k € ker(T), so T'(z) =T(v + k) =
Tw)+T(k)=w+0=w,soxecT Hw). O
Example 7. A system of m equations in n variables gives a matrix equation

Ax =b.
The matrix A corresponds to a linear transformation T : R®™ — R™ given by
T(x) = Az. The solution set of the homogeneous equation Az = 0 is the

kernel of T'. If v is a particular solution to Az = b, then the solution set is the
homogeneous solution offset by the particular solution v.



6. KERNELS AND DIRECT SUMS

Definition 4. Let V' be a vector space and let U;,Us < V. We say that V is a
direct sum of Uy and Us, and write V = U; ® Uy, if

(Dl) V =U;, + Us;

(D2) Uy nU, = {0}.

Proposition 15. Let V' be a vector space and let X be a basis for V.
Let Yy C X and let Yo = X \Yy. Let Uy = span(Y7) and let Uy = span(Y3).
Then V =U; @& Us.

Proof. We verify the two properties of direct sum.

(D1) We always have U; + Uy < V; we need to show that V' C U; + Us.
If v € V, then V is a linear combination from X because X spans V. Since
X = Y7 UY5, v can be written as a linear combination of some vectors from Y;
plus a linear combination some vectors from Y>. Such an element is in Uy + Us.

(D2) Let v € Uy NUs. Then v is a linear combination from Y7 and also v is a
linear combination from Y5. The difference of these is a linear combination from
X which equals zero; since X is linearly independent, all of the coefficients must
be zero. Thus v = 0. O

Proposition 16. Let V' be a vector space.
Let Uy, Uy <V such that V= Uy @ Us. Let Y7 be a basis for Uy and Ys be a
basis for Uy. Then Y1 UY5 is a basis for V.

Proof. Exercise. O

Corollary 3. Let V be a finite dimensional vector space and let Uy, Us < V
such that V.=U, ® Uy. Then dim(V) = dim(U;) 4 dim(Us).

Example 8. Let V = R3. Let U; be a plane through the origin in R? and let
Us be a line through the origin in R3. Then V = U; @ U, if and only if the line
U, does not lie on the plane Uj.

Proposition 17. Let T : V. — W be a linear transformation. Let K = ker(T).
Then

(a) there exists U <V such that V =K @ U;
(b) T [y: U — W is injective.

Proof. Let Y7 be a basis for K and let X be a completion of Y7 to a basis for
X. Let Yo = X \Y;. Let U = span(Y3). Then by Proposition 15, V = K @ U.
This proves (a).

Recall that T [y: U — W is the restriction of T to the set U; that is, we only
consider what T does to elements of U. Let u € ker(T [y). Then T'(u) = 0, so
u€ K. Thusu € KNU = {0}, so v = 0. Thus the kernel of T' [ is trivial, so
T |y is injective by Proposition 9. (|



7. RANK AND NULLITY

Definition 5. Let V be a finite dimensional vector space and let T : V. — W
be a linear transformation. Let img(T") = T (V') denote the image of 7.

The rank of T is the dimension of the image of T: rank = dim(img(7)).

The nullity of T is the dimension of the kernel of T: nullity = dim(ker(T)).

Theorem 1. (Rank plus Nullity Theorem)
Let V' be a finite dimensional vector space and let T : V. — W be a linear
transformation. Then dim(V') = dim(ker(T)) + dim(img(T")).

Proof. Let K = ker(T). By Proposition 17 (a), there exists a subspace U <V
such that V.= K®U. Thus dim(V) = dim(K)+dim(U). By Proposition 17 (b),
the linear transformation T' [y: U — W is injective, so dim(T(U)) = dim(U).
Thus
dim(V) = dim(K) + dim(U) = dim(ker(T")) + dim(img(7")).
O

Corollary 4. Let V and W be a finite dimensional vector spaces of the same
dimension. Let T : V. — V be a linear transformation. Then T is injective if
and only if T is surjective.

Proof. Exercise. U



8. COMPOSITION OF LINEAR TRANSFORMATIONS

Proposition 18. Let S : U — V and T : V — W be linear transformations.
Then T oS : U — W is a linear transformation.

Proof. We verify the two properties of a linear transformation.
(T1) Let uy,us € U. Then

T(S(ur +u1)) = T(S(ur) + S(uz)) = T(S(u1)) + T(S(uz)).
(T2) Let w € U and a € R. Then
T(S(au)) = T(aS(u)) = aT(S(u)).
U

Example 9. Let S : R? — R? be dilation by a and let T : R? — R? be dilation
by b. Then T o S : R? — R3 is dilation by ab.

Example 10. Let S : R? — R? be rotation by a degrees and let T : R? — R?
be rotation by 3 degrees. Then T o S : R? — R3 is rotation by o + 3 degrees.

Definition 6. Let T': V — W be a linear transformation.

We say that T is invertible if there exists a linear transformation S : W — V
such that SoT =idy and T oS = idy . Such an S is called the inverse of T'; it
is necessarily unique, and is denoted by 7.

Proposition 19. Let T : V — W be a linear transformation.
Then T is invertible if and only if T is bijective.

Proof. Exercise. O

Proposition 20. Let T : U — V be a linear transformation.
Let S :V — W be an injective linear transformation.
Then ker(S o T) = ker(T).

Proof. Exercise. O
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Remark 5. Let A be an m X n matrix and consider the matrix equation Ax = 0,
where 0 is the zero n x 1 column vector. The solution to this equation is the
kernel of the corresponding linear transformation 74 : R™ — R™.

Let B be A in reduced row echelon form. Row reduction of A corresponds
to warping m-space by invertible transformations. Then ker(Tg) = ker(T4),
because B = U A, where U is a product of elementary invertible matrices and so
it is invertible; then Ty is injective. Therefore ker(Tg) = ker(TyoTa) = ker(Ta).

Moreover, the basic columns of B are clearly linearly independent. Then the
pullback of these basic columns via U~ gives linearly independent vectors in
img(T) = T4(R™), the image of T4.

A basis for the kernel of T4 is given by modifying the free columns of B in
the manner prescribed in solving Az = 0.

A basis for the image of T4 is given by the columns of A corresponding to the
basic columns of B.

Example 11. Let eq,...,e4 be the standard basis vectors for R*. Let
vy = (2,—4,4),v5 = (1,-1,3),v3 = (3,-7,5),v4 = (0,2,5) € R,

Let T : R* — R3 be the unique linear transformation given by T'(e;) = v;. Find
a basis for the image and the kernel of T

Solution. Set
2 1 3 0

A=|-4 -1 -7 2
4 3 5 5
Row reduce A; the corresponding reduced row echelon matrix is
10 2 O
B=10 1 -1 0
0 0 0 1

The basic variables are x1, 3, and x4. The free variable is x3. So the solution
to Az =0 1is
-2

1
T3l
0
thus {(—2,1,1,0)} is a basis for ker(T'), and {(2,—4,4),(1,—1,3),(0,2,5)} is a
basis for img(7T), the image of T. O

Remark 6. Let Y = {vy,...,v,} € R™. We wish to determine whether or not
the set Y is independent. If n > m, we know they cannot be independent, so
assume that n < m.

Form the matrix A = [v; | --- | v,]. Corresponding to A is a linear trans-
formation T4 : R — R™. We know that n = dim(R") = dim(ker(T}4)) +
dim(img(74)). Now X is independent if and only if there span in R™ is a vector
space of dimension n. This span is exactly img(74). Thus X is independent if
and only if dim(img(74)) = n. This is the case if and only if dim(ker(T4)) = 0.

Row reduce A to obtain a matrix B; only forward elimination is necessary.
Now X is dependent if and only if B has a free column, which is the case if and
only if B has a zero row (since n < m).
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9. ISOMORPHISMS

Definition 7. Let V and W be vector spaces.

An isomorphism from V to W is a bijective linear transformation 7' : V —
W. We say that V is isomorphic to W, and write V' = W if there exists an
isomorphism 7 : V — W.

Proposition 21. Let V' be a vector space.
Then idy : V. — V is an isomorphism.

Proof. Clear. O

Proposition 22. Let T : V — W be an isomorphism.
Then T—': W — V is an isomorphism.

Proof. Since T is bijective, T=1 : W — V is a function. We verify the properties
of a linear transformation.

(T1) Let wy,we € W. Since T is bijective, there exist unique elements
uy,us € U such that T(uy) = wy and T'(ug) = we. Now T(ug + ug) = T(uy) +
T(’LLQ) = w1 + w2, SO Tﬁl(wl + wg) =Up + Uz = Tﬁl(wl) + Tﬁl(U/Q).

(T2) Let w € W and a € R. There exists a unique element u € U such that
T(u) = w. Then T(au) = aT'(u) = aw, so T~ (aw) = au = aT~(w). O

Proposition 23. Let S: U —=V and T : V — W be isomorphisms.
Then T oS :U — W 1is an isomorphism.

Proof. We have seen that the composition of linear transformations is linear, and
we always have that the composition of bijective functions is bijective. O

Remark 7. Let U, V, and W be vector spaces. Then
(a) V=V;
(b)) VEW oW XV,
) UZVandVEW=UX=W.

This says that isomorphism is an equivalence relation.

Proposition 24. Let T : V — W be a linear transformation. Let X be a basis
for V.. Then T is an isomorphism if and only if T(X) is a basis for W.

Proof.

(=) Suppose that T is an isomorphism. Then T is injective, so by Proposition
11, T(X) is a basis for T(V). But T is also surjective, so T(V) = W, and the
result follows.

(«<=) Suppose that T'(X) is a basis for W. Then T is clearly surjective, and
by Proposition 11, T is also injective. Thus T is an isomorphism. U

Remark 8. In light of Proposition 3, we may construct an isomorphism between
spaces by sending a basis to a basis.
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Definition 8. Let V be a finite dimensional vector space of dimension n.
An ordered basis for V is an ordered n-tuple (z1,...,2,) € V™ of linearly
independent vectors from V.

Remark 9. Note that if (z1,...,2,) is an ordered basis, then X = {z1,...,z,}
is a basis. With this understanding, we may say: “let X be an ordered basis”,
by which we mean that X is the basis which corresponds to an ordered basis.

Theorem 2. Let V' be a finite dimensional vector space of dimension n. Let

X ={x1,...,z,} be an ordered basis for V. Define a linear transformation
Fx:V—-oR" by TIx(x;)=e.

Then I'x is an isomorphism.

Description. We have already essentially proven this, so let us describe it in more

detail.
Every element of V' may be written in a unique way as a linear combination of

elements from X: if v € V, then v =), , a;x; for some real number ay, ..., ay.
Then
n n n
Ix(v) = Zain(xi) = Z Zaiei = (ai,...,an);
i=1 i=1 i=1

this is the linear transformation that sends the basis X of V' to the standard basis
for R™, whose existence, uniqueness, and linearity is guaranteed by Proposition
3. It is an isomorphism by Proposition 24. U

Corollary 5. Let V and W be vector spaces of dimension n. Then V = W.

Proof. Every finite dimensional vector space has a basis. Let X be an ordered
basis for V and let Y be an ordered basis for W. Since I'y : W — R" is an
isomorphism, it is invertible, and its inverse is also an isomorphism. Since the
composition of isomorphisms is an isomorphism, we see that

F;l ol'x : VoW
is an isomorphism, so V= W. (]
Remark 10. Even though two vector spaces of the same dimension are isomor-
phic, there are many ways in which they are isomorphic. Indeed, each basis X

for V' gives a different isomorphism I'x : V' — R™. Controlling this is one of the
challenges of linear algebra.
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10. COMPUTING LINEAR TRANSFORMATIONS VIA MATRICES

Remark 11. Let V be a vector space of dimension n and let W be a vector
space of dimension m. Let T': V — W be a linear transformation. If we know
a basis for V and for W, we can use matrices to compute information about 7.
Let X be a basis for V and let Y be a basis for W. Then 'y : V — R" is an
isomorphism and I'y : W — R™ is an isomorphism. These isomorphisms pick
off the coefficients of any vector in V' and W and allow us to think of them as
vector in R™ and R™, respectively. Actually, what we are doing is defining a
transformation S : R™ — R given by S =I'y o T o 'x. In this case,

T:F;loSOI‘X.

This can be written in diagram form:

v - L . w

e e

Rn Rm

This says that to compute T'(v), it suffices to push v into R" via u = I'x(v),
compute S(u), then pull this result back to W via I'y.

But S : R — R™ corresponds to a matrix A, and we can compute Au by
matrix multiplication. This also allows us to compute kernels, images, and so
forth via matrices.

Example 12. Let v; = (1,0,0,0),v2 = (1,0,1,0),v3 = (1,0,0,1) € R*. Let
V be the subspace of R* spanned by {vy,vs,v3}; these form a basis for V. Let
W =R? Let w; = (1,2),ws = (—1,0),w3 = (3,2) € W. Let T : V. — W be the
unique linear transformation given T'(v;) = w;. Find a basis for the kernel of T

Solution. Let ey, eq, e3 be the standard basis vectors for R3. Let S : V — R3 be

given by T(v;) = e;. Then S is an isomorphism. Let R : R* — R? be given by
T(e;) = w;. The matrix for R is

1 -1 3
A= {2 0 2}
Row reduce A to get
1 07
UA= [O : 4] |

The kernel of R is spanned by the vector (=7, —4,1).
Now T = S~'RS. Thus ST = RS. Then

ker(T) = ker(ST) = ker(RS) = S~ (ker(R)).

Thus to find ker(7T'), pull the vector (—7,—4,1) back through S (find its preim-
age). This is —7(1,1,0,0) — 4(1,0,1,0) 4+ (1,0,0,1) = (—10,—7,—4,1). The
kernel of T is the span of this vector. O
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11. VECTOR SPACE OF LINEAR TRANSFORMATIONS

Proposition 25. Let V and W be vector spaces and set
L(V,W)={T:V - W |T is linear}.
Let S:V - W and T : V — W be linear transformations. Let a € R. Define
the sum S + T and the scalar product aT' by their effect on any vector v € V:
e (S+T)(v)=SW)+TW) ;
o (aT)(v) =aT(v) .
Then
(a) S+T:V —>W and aT : V — W are linear transformations;
(b) L(V,W) is a vector space.

Reason. The verification that S+7 and aT are linear transformations is straight-
forward.

The proof that L(V,W) is a vector space comes down to the fact that all
of the properties (V1) through (V8) of the vector space W work pointwise on
functions into W. O

Remark 12. The vector space M,,,x, of m X n matrices is isomorphic to R™",
as one expects. But also, we know that matrices correspond to linear transfor-
mations of cartesian spaces; we now describe this correspondence in terms of
isomorphism.

Proposition 26. Let T;; : R™ — R™ be given by T;;(e;) = e; and T;j(ex) = 0 if
k#j. Then {T;; |i=1,...,m;j=1,...,n} is a basis for L(R",R™).

Reason. One can show that this set is linearly independent and spans. O
Proposition 27. Define a function
men : L(anRm) - men by men(T) = AT;

where Ap = [T'(e1) | -+ | T(eyn)] is the matriz corrsponding to a transformation
T:R™ — R™. Then Qpxn is an isomorphism.

Reason. The function €y, sends the basis {T;;} for L(R™,R™) to the basis
{Mz]} for Man. O

Proposition 28. Let V and W be finite dimensional vector spaces. Let X =
{z1,...,z,} be an ordered basis for V- and Y = {y1,...,ym} be an ordered basis
for W. Define a function

Qyx LV, W) = Mpxn by Qyx(T)=As,

where S =Ty o TT'y" and Ag = [S(e1) | -+ | S(en)] is the matriz corresponding
to S. Then Qy x is an isomorphism.

Reason. In a manner similar to the case where V = R"” and W = R™, one can
find a basis for L(V, W) that is sent by Qy, x to the basis {M;;} for My, xp. O
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12. LINEAR OPERATORS

Definition 9. Let V be a vector space.
A linear operator on V is a linear transformation 7: V — V.
Let L(V) denote the set of all linear operators on V.

Let V be a vector space and let S,T : V — V be a linear operators. Then
the composition T'0 S : V — V is a linear operator. Let us drop the o from the
notation and think of composition of linear operators as multiplication in the set
L(V): thus T'S is the transformation 7' o S.

This multiplication distributes over addition of operators:

T(S+R)=TS+TR; (T+S)R=TR+ SR.

Thus L(V) is a set which comes equipped with two operations, addition of trans-
formations and multiplication of transformations. The additive identity of this
set is the zero transformation (which we denote by 0), and the multiplicative
identity is the identity transformation idy, which we now denote by 1. Ev-
ery transformation 7' has an additive inverse —7. A transformation 7" has a
multiplicative inverse 7! if and only if T has a trivial kernel.

Let a € R. Define N, : V. — V to be dilation by a: Ny(v) = av for all v € V.
Then N, is a linear operator. Note that N, commutes with any other operator:

N, =TN,.

Also note that N,T is exactly the transformation which we previously described
by aT'. When N, occurs on the left, we drop the N from the notation, and
simply write a1 instead of N,T'.

Let T2 = TT, T3 = TTT, and in general, let 7" denote the composition
of T with itself n times. This is T applied to the space V over and over. For
example, if T is rotation of R? by an angle of 45 degrees, then T* is rotation by
180 degrees and T® is the identity tranformation I = idy .

Let T: V — V be a linear operator. We see that any polynomial in T'

L=T"+ap, T" '+ - +a;T+ao

is a linear operator. Its effect on v € V is given by distributing v into the
polynomial:

L(v) =T"(v) + an1T" " (v) + - + a1 T(v) + ao.
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13. LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

Consider the differential equation
y' by + ey =g(t),
where b, ¢ € R and ¢g(t) is a smooth function on some open interval I C R. To
solve this differential equation means to find all smooth functions y such that
the function y” + by’ + cy is equal to the function g(¢). We use linear algebra to
analyse this situation.

Let I C R be an open interval and let D(I) be the set of smooth real valued
functions defined by I; this is a vector space under addition and scalar multi-
plication of functions. Define D : D(I) — D(I) by D(f) = f’, the derivative
of f. Then D is a linear transformation. Any polynomial in D is also a linear
transformation, called a differential operator. Note that the kernel of D is the
set of all constant functions on I. This is a one dimensional subspace of D(I),
spanned by the function f(¢) = 1.

Let b,c € R and let g € D(I). Define a function

L:D(I)— D) by Llyl=y"+by+cy.
Then L is a differential operator:
L=D*+bD+ec.
The general solution to the differential equation
y' by +cy=g(t)
is of the form y = y;, + yp, where y;, is the general solution to the homogeneous
differential equation L[y] = 0 and vy, is a particular solution to the differential
equation L[y] = g(¢). This comes from the fact that the solution to the homo-
geneous equation is the kernel of L, and the solution to the nonhomogeneous
equation is a coset of this kernel.

One may attempt to solve the homogeneous differential equation L[y] = 0 by
factoring the linear operator L:

L = (D — Tl)(D — T'Q),

where r; = %(—b:l: Vb? — 4c) are the roots of the polynomial L. Now any solution
to (D — r9)[y] = 0 is also a solution to L[y] = 0, since (D — r1)[0] = 0. Since
D —ry and D —ry commute, the same can be said about solutions to (D —ry)[y].
But this differential equation is very easy to solve:

(D-7)y =0y =ryslogy=r+C & y=ke,

where k = e“ is an arbitrary constant of integration. One can show that ker(L) =

span{e™? et}
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14. EXERCISES

Exercise 1. Let V be a vector space.
Let Uy,Us <V such that V = U; @ Us. Let Y; be a basis for U; and Y5 be a
basis for Us. Show that Y7 UY5 is a basis for V.

Exercise 2. Let V be a vector space and let W < V. Let vy,vp € V.

(a) Show that V = Uyey(v+ W).
(b) Show that (v + W)N(va+ W) £ & = (v1 + W) = (vg + W).

Exercise 3. Let V be a vector space and let W < V.
Show that v; + W = vy + W if and only if vo — vy € W.

Exercise 4. Let V be a finite dimensional vector space.

Let U<V and let T : V — V be a linear transformation.
(a) Show that U =V if and only if dim(U) = dim(V').
(b) Show that T is injective if and only if T is surjective.

Exercise 5. Let T : V — W be a linear transformation.
Show that T is invertible if and only if T is bijective.

Exercise 6. Let T : U — V be a linear transformation.
Let S: V — W be an injective linear transformation.
Show that ker(S o T') = ker(T).

Exercise 7. Let T : V — W be a linear transformation and let Uy,Us < V. In
each case, prove or give a counterexample.

(a) T(U1 n UQ) = T(U1) ﬂT(UQ);

b)) V=U,Us=T(V)=T(U) ®T(Us).
Exercise 8. Let T : V — W be a linear transformation and let Uy, Us < W. In
each case, prove or give a counterexample.

(a) Tﬁl(Ul N UQ) = Tﬁl(Ul) n Tﬁl(UQ);

(b) W=UeU; = Tﬁl(W) = Tﬁl(Ul) D Tﬁl(UQ).

Exercise 9. Let P,, denote the vector space of polynomial functions of degree
less than or equal to n with real coefficients:

Prn={f(x)=ao+ a1z + -+ apz" | a; € R}.
Let I': P, — R be given by I'(z*~!) =¢; fori=1,...,5.
Let D : P4 — P4 be given by D(f) = L.
Let T:R® — R5 be given by T=T o Dol L
(a) Describe why I' is an isomorphism.
(b) Find the matrix corresponding to the linear transformation T

(c) Find a basis for the image and the kernel of T.
(d) Find a basis for the image and the kernel of D.

Exercise 10. Let D(R) denote the set of all smooth functions on R.
Let D : D(R) — D(R) be given by D(f) = 4.

Let D™ : D(R) — D(R) denote D composed with itself n times.

Find ker(D™); justify your answer.
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